USA News

Columnar structure of human telomeric chromatin


  • Palm, W. & de Lange, T. How shelterin protects mammalian telomeres. Annu. Rev. Genet. 42, 301–334 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pisano, S., Galati, A. & Cacchione, S. Telomeric nucleosomes: forgotten gamers at chromosome ends. Cell. Mol. Life Sci. 65, 3553–3563 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hewitt, G. et al. Telomeres are favoured targets of a persistent DNA harm response in ageing and stress-induced senescence. Nat. Commun. 3, 708 (2012).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Takai, H., Smogorzewska, A. & de Lange, T. DNA harm foci at dysfunctional telomeres. Curr. Biol. 13, 1549–1556 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Longhese, M. P. DNA harm response at useful and dysfunctional telomeres. Genes Dev. 22, 125–140 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Samassekou, O., Gadji, M., Drouin, R. & Yan, J. Sizing the ends: regular size of human telomeres. Ann. Anat. 192, 284–291 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Blasco, M. A. The epigenetic regulation of mammalian telomeres. Nat. Rev. Genet. 8, 299–309 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • d’Adda di Fagagna, F. et al. A DNA harm checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Widom, J. A relationship between the helical twist of DNA and the ordered positioning of nucleosomes in all eukaryotic cells. Proc. Natl Acad. Sci. USA 89, 1095–1099 (1992).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Valouev, A. et al. Determinants of nucleosome group in major human cells. Nature 474, 516–520 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Robinson, P. J. J. & Rhodes, D. Construction of the ‘30 nm’ chromatin fibre: a key position for the linker histone. Curr. Opin. Struct. Biol. 16, 346–343 (2006).

    Article 
    CAS 

    Google Scholar 

  • Garcia-Saez, I. et al. Construction of an H1-bound 6-nucleosome array reveals an untwisted two-start chromatin fiber conformation. Mol. Cell 72, 902–915 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Track, F. et al. Cryo-EM research of the chromatin fiber reveals a double helix twisted by tetranucleosomal models. Science 344, 376–380 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ekundayo, B., Richmond, T. J. & Schalch, T. Capturing structural heterogeneity in chromatin fibers. J. Mol. Biol. 429, 3031–3042 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Robinson, P. J. J., Fairall, L., Huynh, V. A. T. & Rhodes, D. EM measurements outline the size of the “30-nm” chromatin fiber: proof for a compact, interdigitated construction. Proc. Natl Acad. Sci. USA 103, 6506–6511 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kruithof, M. et al. Single-molecule power spectroscopy reveals a extremely compliant helical folding for the 30-nm chromatin fiber. Nat. Struct. Mol. Biol. 16, 534–540 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Konrad, S. F., Vanderlinden, W. & Lipfert, J. Quantifying epigenetic modulation of nucleosome respiratory by high-throughput AFM imaging. Biophys. J. 121, 841–851 (2022).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bedoyan, J. Okay., Lejnine, S., Makarov, V. L. & Langmore, J. P. Condensation of rat telomere-specific nucleosomal arrays containing unusually brief DNA repeats and histone H1. J. Biol. Chem. 271, 18485–18493 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Makarov, V. L., Lejnine, S., Bedoyan, J. & Langmore, J. P. Nucleosomal group of telomere-specific chromatin in rat. Cell 73, 775–787 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Soman, A. et al. The human telomeric nucleosome shows distinct structural and dynamic properties. Nucleic Acids Res. 48, 5383–5396 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Luger, Okay., Mader, A. W., Richmond, R. Okay., Sargent, D. F. & Richmond, T. J. Crystal construction of the nucleosome core particle at 2.8 Å decision. Nature 389, 251–260 (1997).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vasudevan, D., Chua, E. Y. & Davey, C. A. Crystal constructions of nucleosome core particles containing the ‘601’ sturdy positioning sequence. J. Mol. Biol. 403, 1–10 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pisano, S. et al. Telomeric nucleosomes are intrinsically cell. J. Mol. Biol. 369, 1153–1162 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Huynh, V. A. T., Robinson, P. J. J. & Rhodes, D. A technique for the in vitro reconstitution of an outlined “30 nm” chromatin fibre containing stoichiometric quantities of the linker histone. J. Mol. Biol. 345, 957–968 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brouwer, T. et al. A crucial position for linker DNA in higher-order folding of chromatin fibers. Nucleic Acids Res. 49, 2537–2551 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pope, L. H. et al. Single chromatin fiber stretching reveals bodily distinct populations of disassembly occasions. Biophys. J. 88, 3572–3583 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Korolev, N., Lyubartsev, A. P. & Nordenskiöld, L. A scientific evaluation of nucleosome core particle and nucleosome-nucleosome stacking construction. Sci Rep. 8, 1543 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Dorigo, B. et al. Nucleosome arrays reveal the two-start group of the chromatin fiber. Science 306, 1571–1573 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Koopmans, W. J. A., Buning, R., Schmidt, T. & van Noort, J. spFRET utilizing alternating excitation and FCS reveals progressive DNA unwrapping in nucleosomes. Biophys. J. 97, 195–204 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Huang, Y.-C. et al. The impact of linker DNA on the construction and interplay of nucleosome core particles. Smooth Matter 14, 9096–9106 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tatchell, Okay. & Van Holde, Okay. E. Compact oligomers and nucleosome phasing. Proc. Natl Acad. Sci. USA 75, 3583–3587 (1978).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bowerman, S., Wereszczynski, J. & Luger, Okay. Archaeal chromatin ‘slinkies’ are inherently dynamic complexes with deflected DNA wrapping pathways. eLife 10, e65587 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mattiroli, F. et al. Construction of histone-based chromatin in Archaea. Science 357, 609–612 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Edayathumangalam, R. S., Weyermann, P., Gottesfeld, J. M., Dervan, P. B. & Luger, Okay. Molecular recognition of the nucleosomal “supergroove”. Proc. Natl Acad. Sci. USA 101, 6864–6869 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vancevska, A., Douglass, Okay. M., Pfeiffer, V., Manley, S. & Lingner, J. The telomeric DNA harm response happens within the absence of chromatin decompaction. Genes Dev. 31, 567–577 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cacchione, S., Biroccio, A. & Rizzo, A. Rising roles of telomeric chromatin alterations in most cancers. J. Exp. Clin. Most cancers Res. 38, 21 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Skrajna, A. et al. Complete nucleosome interactome display screen establishes elementary rules of nucleosome binding. Nucleic Acids Res. 48, 9415–9432 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, W. H. et al. Multivalent interactions drive nucleosome binding and environment friendly chromatin deacetylation by SIRT6. Nat. Commun. 11, 5244 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Court docket, R., Chapman, L., Fairall, L. & Rhodes, D. How the human telomeric proteins TRF1 and TRF2 acknowledge telomeric DNA: a view from high-resolution crystal constructions. EMBO Rep. 6, 39–45 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Willhoft, O. et al. Construction and dynamics of the yeast SWR1–nucleosome advanced. Science 362, eaat7716 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Hübner, B. et al. Ultrastructure and nuclear structure of telomeric chromatin revealed by correlative mild and electron microscopy. Nucleic Acids Res. 50, 5047–5063 (2022).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Fajkus, J. & Trifonov, E. N. Columnar packing of telomeric nucleosomes. Biochem. Biophys. Res. Comm. 280, 961–963 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Luger, Okay., Rechsteiner, T. J. & Richmond, T. J. Preparation of nucleosome core particle from recombinant histones. Strategies Enzymol. 304, 3–19 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dyer, P. N. et al. Reconstitution of nucleosome core particles from recombinant histones and DNA. Strategies Enzymol. 375, 23–44 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • OriginPro v.2019 (OriginLab Corp., 2019).

  • Ou, H. D. et al. ChromEMT: visualizing 3D chromatin construction and compaction in interphase and mitotic cells. Science 357, eaag0025 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Zhou, B. R. et al. Revisit of reconstituted 30-nm nucleosome arrays reveals an ensemble of dynamic constructions. J. Mol. Biol. 430, 3093–3110 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • de la Rosa-Trevín, J. M. et al. Scipion: a software program framework towards integration, reproducibility and validation in 3D electron microscopy. J. Struct. Biol. 195, 93–99 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Zivanov, J. et al. New instruments for automated high-resolution cryo-EM construction dedication in RELION-3. eLife 7, e42166 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rohou, A. & Grigorieff, N. CTFFIND4: quick and correct defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • de la Rosa-Trevín, J. M. et al. Xmipp 3.0: an improved software program suite for picture processing in electron microscopy. J. Struct. Biol. 184, 321–328 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory analysis and evaluation. J. Comp. Chem. 25, 1605–1612 (2004).

    CAS 
    Article 

    Google Scholar 

  • Pettersen, E. F. et al. UCSF ChimeraX: construction visualization for researchers, educators, and builders. Protein Sci. 30, 70–82 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Casañal, A., Lohkamp, B. & Emsley, P. Present developments in Coot for macromolecular mannequin constructing of electron cryo-microscopy and crystallographic knowledge. Protein Sci. 29, 1069–1078 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Burnley, T., Palmer, C. M. & Winn, M. Current developments within the CCP-EM software program suite. Acta Crystallogr. D Struct. Biol. 73, 469–477 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vagin, A. A. et al. REFMAC5 dictionary: group of prior chemical information and pointers for its use. Acta Crystallogr. D Biol. Crystallogr. 60, 2184–2195 (2004).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction resolution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schuck, P. Measurement-distribution evaluation of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brautigam, C. A. Calculations and publication-quality illustrations for analytical ultracentrifugation knowledge. Strategies Enzymol. 562, 109–133 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Laue, T. M., Shah, B., Ridgeway, T. M. & Pelletier, S. L. in Analytical Ultracentrifugation in Biochemistry and Polymer Science (eds S. E. Harding, S.E. et al.) 90–125 (Royal Society of Chemistry, 1992).

  • Kaczmarczyk, A., Brouwer, T. B., Pham, C., Dekker, N. H. & van Noort, J. Probing chromatin construction with magnetic tweezers. Strategies Mol. Biol. 1814, 297–323 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brouwer, T. B., Kaczmarczyk, A., Pham, C. & van Noort, J. Unraveling DNA group with single-molecule power spectroscopy utilizing magnetic tweezers. Strategies Mol. Biol. 1837, 317–349 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Meng, H., Andresen, Okay. & van Noort, J. Quantitative evaluation of single-molecule power spectroscopy on folded chromatin fibers. Nucleic Acids Res. 43, 3578–3590 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brouwer, T. B., Hermans, N. & van Noort, J. Multiplexed nanometric 3D monitoring of microbeads utilizing an FFT-phasor algorithm. Biophys. J. 118, 2245–2257 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kaczmarczyk, A. et al. Single-molecule power spectroscopy on histone H4 tail cross-linked chromatin reveals fiber folding. J. Biol. Chem. 292, 17506–17513 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Evans, E. Probing the relation between power—lifetime—and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brower-Toland, B. D. et al. Mechanical disruption of particular person nucleosomes reveals a reversible multistage launch of DNA. Proc. Natl Acad. Sci. USA 99, 1960–1965 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Related Articles

    Leave a Reply

    Your email address will not be published.

    Back to top button