Canada News

Geological diversity and microbiological potential of lakes on Mars


  • Carr, M. H. Water on Mars. Nature 326, 30–35 (1987).

  • Cabrol, N. A. & Grin, E. A. Distribution, classification, and ages of martian affect crater lakes. Icarus 142, 160–172 (1999).

    ADS 
    Article 

    Google Scholar 

  • Goldspiel, J. M., Squyres, S. W. & Jankowski, D. G. Topography of small martian valleys. Icarus 105, 479–500 (1993).

    ADS 
    Article 

    Google Scholar 

  • Fassett, C. I. & Head, J. W. Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian floor and subsurface hydrology. Icarus 198, 37–56 (2008).

    ADS 
    Article 

    Google Scholar 

  • Goudge, T. A., Morgan, A. M., Stucky de Quay, G. & Fassett, C. I. The significance of lake breach floods for valley incision on early Mars. Nature 597, 645–649 (2021).

    ADS 
    Article 

    Google Scholar 

  • Goudge, T. A., Aureli, Ok. L., Head, J. W., Fassett, C. I. & Mustard, J. F. Classification and evaluation of candidate affect crater-hosted closed-basin lakes on Mars. Icarus https://doi.org/10.1016/j.icarus.2015.07.026 (2015).

  • Michalski, J. R. et al. The geology and astrobiology of McLaughlin crater, Mars: an historic lacustrine basin containing turbidites, mudstones, and serpentinites. J. Geophys. Res. Planets 124, 910–940 (2019).

    ADS 
    Article 

    Google Scholar 

  • Boatwright, B. D. & Head, J. W. Noachian proglacial paleolakes on Mars: regionally recurrent fluvial exercise and lake formation inside closed-source drainage basin craters. Planet. Sci. J. 3, 38 (2022).

    Article 

    Google Scholar 

  • Michalski, J. R. et al. Groundwater exercise on Mars and implications for a deep biosphere. Nat. Geosci. 6, 133–138 (2013).

    ADS 
    Article 

    Google Scholar 

  • Newsom, H. E., Brittelle, G. E., Hibbitts, C. A., Crossey, L. J. & Kudo, A. M. Influence crater lakes on Mars. J. Geophys. Res. 101, 14951–14955 (1996).

    ADS 
    Article 

    Google Scholar 

  • Wray, J. J. et al. Columbus crater and different potential groundwater-fed paleolakes of Terra Sirenum, Mars. J. Geophys. Res. Planets https://doi.org/10.1029/2010JE003694 (2011).

  • Osterloo, M. M., Anderson, F. S., Hamilton, V. E. & Hynek, B. M. Geologic context of proposed chloride-bearing supplies on Mars. J. Geophys. Res. Planets 115, JE003613 (2010).

    Article 

    Google Scholar 

  • Ehlmann, B. L. et al. Clay minerals in delta deposits and natural preservation potential on Mars. Nat. Geosci. https://doi.org/10.1038/ngeo207 (2008).

  • Soare, R. J., Osinki, G. R. & Roehm, C. L. Thermokarst lakes and ponds on Mars within the very latest (late Amazonian) previous. Earth Planet. Sci. Lett. 272, 382–393 (2008).

    ADS 
    Article 

    Google Scholar 

  • Sejourne, A. et al. Scalloped depressions and small-sized polygons in western Utopia Planitia, Mars: a brand new formation speculation. Planet. House Sci. 59, 412–422 (2011).

    ADS 
    Article 

    Google Scholar 

  • Warner, N. et al. Late Noachian to Hesperian local weather change on Mars: proof of episodic warming from transient crater lakes close to Ares Vallis. J. Geophys. Res. 115, JE003522 (2010).

    Google Scholar 

  • Orosei, R. et al. Radar proof of subglacial liquid water on Mars. Science 361, 490–493 (2018).

    ADS 
    Article 

    Google Scholar 

  • Lauro, S. E. et al. A number of subglacial water our bodies under the south pole of Mars unveiled by new MARSIS knowledge. Nat. Astron. 5, 63–70 (2021).

    ADS 
    Article 

    Google Scholar 

  • Bierson, C. J., Tulaczyk, S., Courville, S. W. & Putzig, N. E. Sturdy MARSIS radar reflections from the bottom of Martiansouth polar cap could also be on account of conductive ice or minerals. Geophys. Res. Lett. 48, GL093880 (2021).

    Article 

    Google Scholar 

  • Irwin, R. P., Howard, A. D. & Maxwell, T. A. Geomorphology of Ma’adim Vallis, Mars, and related paleolake basins. J. Geophys. Res. 109, JE002287 (2004).

    Google Scholar 

  • Michalski, J. R., Dobrea, E. Z. N., Niles, P. B. & Cuadros, J. Historic hydrothermal seafloor deposits in Eridania basin on Mars. Nat. Commun. 8, 15978 (2017).

    ADS 
    Article 

    Google Scholar 

  • Fassett, C. I. & Head, J. W. Sequence and timing of situations on early Mars. Icarus 211, 1204–1214 (2011).

    ADS 
    Article 

    Google Scholar 

  • Goudge, T. A., Fassett, C. I., Head, J. W., Mustard, J. F. & Aureli, Ok. L. Insights into floor runoff on early Mars from paleolake basin morphology and stratigraphy. Geology 44, 419–422 (2016).

    ADS 
    Article 

    Google Scholar 

  • Summons, R. E. et al. Preservation of martian natural and environmental information: last report of the Mars Biosignature Working Group. Astrobiology 11, 157–181 (2011).

    ADS 
    Article 

    Google Scholar 

  • Ruff, S. W., Niles, P. B., Alfano, F. & Clarke, A. B. Proof for a Noachian-aged ephemeral lake in Gusev crater, Mars. Geology 42, 359–362 (2014).

    ADS 
    Article 

    Google Scholar 

  • Grotzinger, J. P. et al. Deposition, exhumation, and paleoclimate of an historic lake deposit, Gale crater, Mars. Science 350, aac7575 (2015).

    ADS 
    Article 

    Google Scholar 

  • Goudge, T. A., Mohrig, D., Cardenas, B. T., Hughes, C. M. & Fassett, C. I. Stratigraphy and paleohydrology of delta channel deposits, Jezero crater, Mars. Icarus https://doi.org/10.1016/j.icarus.2017.09.034 (2018).

  • Lehner, B. & Döll, P. Growth and validation of a worldwide database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).

    ADS 
    Article 

    Google Scholar 

  • Downing, J. A. et al. The worldwide abundance and dimension distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).

    ADS 
    Article 

    Google Scholar 

  • Wetzel, R. G., Limnology: Lake and River Ecosystems (Elsevier, 2001).

  • Cohen, A. S. Paleolimnology: The Historical past and Evolution of Lake Programs (Oxford Univ. Press, 2003).

  • Cabrol, N. A. & Grin, E. A. Lakes on Mars (Elsevier, 2010).

  • Goudge, T. A., Aureli, Ok. L., Head, J. W., Fassett, C. I. & Mustard, J. F. Classification and evaluation of candidate affect crater-hosted closed-basin lakes on Mars. Icarus 260, 346–367 (2015).

    ADS 
    Article 

    Google Scholar 

  • Irwin, R. P., Lewis, Ok. W., Howard, A. D. & Grant, J. A. Paleohydrology of Eberswalde crater, Mars. Geomorphology 240, 83–101 (2015).

    ADS 
    Article 

    Google Scholar 

  • Mangold, N. et al. The origin and timing of fluvial exercise at Eberswalde crater, Mars. Icarus 220, 530–551 (2012).

    ADS 
    Article 

    Google Scholar 

  • Kite, E. S. Geologic constraints on early Mars local weather. House Sci. Rev. 215, 10 (2019).

    ADS 
    Article 

    Google Scholar 

  • Moore, J. M., Howard, A. D., Dietrich, W. E. & Schenk, P. M. Martian layered fluvial deposits: implications for Noachian local weather situations. Geophys. Res. Lett. 30, GL019002 (2003).

    Google Scholar 

  • Stucky de Quay, G., Goudge, T. A. & Fassett, C. I. Precipitation and aridity constraints from paleolakes on early Mars. Geology 48, 1189–1193 (2020).

    ADS 
    Article 

    Google Scholar 

  • Buhler, P. B., Fassett, C. I., Head, J. W. & Lamb, M. P. Timescales of fluvial exercise and intermittency in Milna Crater, Mars. Icarus 241, 130–147 (2014).

    ADS 
    Article 

    Google Scholar 

  • Lapôtre, M. G. A. & Ielpi, A. The tempo of fluvial meanders on Mars and implications for the western delta deposits of Jezero crater. AGU Adv. 1, e2019AV000141 (2020).

    ADS 
    Article 

    Google Scholar 

  • Werner, S. C. & Tanaka, Ok. L. Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars. Icarus 215, 603–607 (2011).

    ADS 
    Article 

    Google Scholar 

  • Guyard, H. et al. New insights into Late Pleistocene glacial and postglacial historical past of northernmost Ungava (Canada) from Pingualuit crater lake sediments. Quat. Sci. Rev. 30, 3892–3907 (2011).

    ADS 
    Article 

    Google Scholar 

  • Wilson, S. A., Howard, A. D., Moore, J. M. & Grant, J. A. A chilly-wet middle-latitude atmosphere on Mars through the Hesperian-Amazonian transition: proof from northern Arabia valleys and paleolakes. J. Geophys. Res. Planets 121, 1667–1694 (2016).

    ADS 
    Article 

    Google Scholar 

  • Hargitai, H. I., Gulick, V. C. & Glines, N. H. Paleolakes of northeast hellas: precipitation, groundwater-fed, and fluvial lakes within the Navua-Hadriacus-Ausonia area, Mars. Astrobiology 18, 1435–1459 (2018).

    ADS 
    Article 

    Google Scholar 

  • Warren, A. O., Holo, S., Kite, E. S. & Wilson, S. A. Overspilling small craters on a dry Mars: insights from breach erosion modeling. Earth Planet. Sci. Lett. 554, 116671 (2021).

    Article 

    Google Scholar 

  • Cabrol, N. A. & Grin, E. A. Overview on the formation of paleolakes and ponds on Mars. Glob. Planet. Change 35, 199–219 (2003).

    ADS 
    Article 

    Google Scholar 

  • Zhao, J., Xiao, L. & Glotch, T. D. Paleolakes within the northwest Hellas area, Mars: implications for the regional geologic historical past and paleoclimate. J. Geophys. Res. Planets 125, e2019JE006196 (2020).

    ADS 
    Article 

    Google Scholar 

  • Citron, R. I., Manga, M. & Hemingway, D. J. Timing of oceans on Mars from shoreline deformation. Nature 555, 643–646 (2018).

    ADS 
    Article 

    Google Scholar 

  • Malin, M. C. & Edgett, Ok. S. Proof for persistent stream and aqueous sedimentation on early Mars. Science 302, 1931–1934 (2003).

    ADS 
    Article 

    Google Scholar 

  • Fassett, C. I. & Head, J. W. III. Fluvial sedimentary deposits on Mars: historic deltas in a crater lake within the Nili Fossae area. Geophys. Res. Lett. 32, GL023456 (2005).

    Article 

    Google Scholar 

  • Brown, A. J. et al. Hydrothermal formation of Clay-Carbonate alteration assemblages within the Nili Fossae area of Mars. Earth Planet. Sci. Lett. https://doi.org/10.1016/j.epsl.2010.06.018 (2010).

  • Bramble, M. S., Goudge, T. A., Milliken, R. E. & Mustard, J. F. Testing the deltaic origin of fan deposits at Bradbury Crater, Mars. Icarus 319, 363–366 (2019).

    ADS 
    Article 

    Google Scholar 

  • Mangold, N. et al. Perseverance rover reveals an historic delta-lake system and flood deposits at Jezero crater, Mars. Science 374, 711–717 (2021).

    ADS 
    Article 

    Google Scholar 

  • Ansan, V. et al. Stratigraphy, mineralogy, and origin of layered deposits inside Terby crater, Mars. Icarus 211, 273–304 (2011).

    ADS 
    Article 

    Google Scholar 

  • Di Achille, G., Hynek, B. M. & Searls, M. L. Constructive identification of lake strandlines in Shalbatana Vallis, Mars. Geophys. Res. Lett. 36, GL038854 (2009).

    Article 

    Google Scholar 

  • Irwin, R. P. & Zimbelman, J. R. Morphometry of Nice Basin pluvial shore landforms: implications for paleolake basins on Mars. J. Geophys. Res. Planets https://doi.org/10.1029/2012JE004046 (2012).

  • Malin, M. C. & Edgett, Ok. S. Mars International Surveyor Mars Orbiter Digicam: interplanetary cruise by main mission. J. Geophys. Res. 106, 23429–23570 (2001).

    ADS 
    Article 

    Google Scholar 

  • Milliken, R. E. & Bish, D. L. Sources and sinks of clay minerals on Mars. Phil. Magazine. 90, 2293–2308 (2010).

    ADS 
    Article 

    Google Scholar 

  • Bristow, T. F. & Milliken, R. E. Terrestrial perspective on authigenic clay mineral manufacturing in historic martian lakes. Clays Clay Miner. 59, 339–358 (2011).

    ADS 
    Article 

    Google Scholar 

  • Ehlmann, B. L. et al. Clay minerals in delta deposits and natural preservation potential on Mars. Nat. Geosci. 1, 355–358 (2008).

    ADS 
    Article 

    Google Scholar 

  • Poulet, F., Carter, J., Bishop, J. L., Loizeau, D. & Murchie, S. M. Mineral abundances on the last 4 Curiosity examine websites and implications for his or her formation. Icarus 231, 65–76 (2014).

    ADS 
    Article 

    Google Scholar 

  • Grant, J. A. et al. HiRISE imaging of affect megabreccia and sub-meter aqueous strata in Holden crater, Mars. Geology 36, 195–198 (2008).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • Horgan, B. H. N., Anderson, R. B., Dromart, G., Amador, E. S. & Rice, M. S. The mineral range of Jezero crater: proof for potential lacustrine carbonates on Mars. Icarus 339, 70211826 (2020).

    Article 

    Google Scholar 

  • Carter, J., Poulet, F., Bibring, J. P., Mangold, N. & Murchie, S. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: up to date world view. J. Geophys. Res. 118, 831–858 (2013).

    Article 

    Google Scholar 

  • Michalski, J. R. et al. Constraints on the crystal-chemistry of Fe/Mg-rich smectitic clays on Mars and hyperlinks to world alteration tendencies. Earth Planet. Sci. Lett. 427, 215–225 (2015).

    ADS 
    Article 

    Google Scholar 

  • Carter, J. et al. Composition of deltas and alluvial followers on Mars. In forty third Lunar and Planetary Science Convention 1978 (2012); https://ui.adsabs.harvard.edu/abs/2012LPI….43.1978C/summary

  • Ehlmann, B. L. et al. Discovery of alunite in Cross crater, Terra Sirenum, Mars: proof for acidic, sulfurous waters. Am. Mineral. 101, 1527–1542 (2016).

    ADS 
    Article 

    Google Scholar 

  • Tarnas, J. D. et al. Radiolytic H2 manufacturing on Noachian Mars: implications for habitability and atmospheric warming. Earth Planet. Sci. Lett. 502, 133–145 (2018).

    ADS 
    Article 

    Google Scholar 

  • Grotzinger, J. P. et al. A liveable fluvio-lacustrine atmosphere at Yellowknife Bay, Gale crater, Mars. Science 343, 1242777 (2014).

    Article 

    Google Scholar 

  • Deocampo, D. M. Authigenic clay minerals in lacustrine mudstones. GSA Spec. Pap. 515, 49–64 (2015).

    Google Scholar 

  • Cuadros, J., Michalski, J. R., Dekov, V. & Bishop, J. L. Octahedral chemistry of two:1 clay minerals and hydroxyl band place within the near-infrared: utility to Mars. Am. Mineral. 101, 554–563 (2016).

    ADS 
    Article 

    Google Scholar 

  • Panagiotis, M. & C., A. R. Fast clay mineral formation in Amazon delta sediments: reverse weathering and oceanic elemental cycles. Science 270, 614–617 (1995).

    Article 

    Google Scholar 

  • Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary local weather. Nature 560, 471–475 (2018).

    ADS 
    Article 

    Google Scholar 

  • Tosca, N. J. & McLennan, S. M. Chemical divides and evaporite assemblages on Mars. Earth Planet. Sci. Lett. 241, 21–31 (2006).

    ADS 
    Article 

    Google Scholar 

  • Leask, E. Ok. & Ehlmann, B. L. Proof for deposition of chloride on Mars from small-volume floor water occasions into the Late Hesperian-Early Amazonian. AGU Adv. 3, e2021AV000534 (2022).

    ADS 
    Article 

    Google Scholar 

  • Cabrol, N. A., Grin, E. A., di Achille, G. & Hynek, B. M. Lakes on Mars (Elsevier, 2010); https://doi.org/10.1016/B978-0-444-52854-4.00008-8

  • Glotch, T. D. & Rogers, A. D. Proof for aqueous deposition of hematite- and sulfate-rich light-toned layered deposits in Aureum and Iani Chaos, Mars. J. Geophys. Res. Planets https://doi.org/10.1029/2006JE002863 (2007).

  • Metz, J. M. et al. Sublacustrine depositional followers in southwest Melas Chasma. J. Geophys. Res. 114, JE003365 (2009).

    Google Scholar 

  • Wilson, L. & Head, J. W. Tharsis-radial graben methods because the floor manifestation of plume-related dike intrusion complexes: fashions and implications. J. Geophys. Res. 107, E8 (2002).

    Google Scholar 

  • Ramirez, R. M. & Craddock, R. A. The geological and climatological case for a hotter and wetter early Mars. Nat. Geosci. 11, 230–237 (2018).

    ADS 
    Article 

    Google Scholar 

  • Ramirez, R. M. et al. Warming early Mars with CO2 and H2. Nat. Geosci. 7, 59–63 (2014).

    ADS 
    Article 

    Google Scholar 

  • Wordsworth, R. et al. Transient lowering greenhouse warming on early Mars. Geophys. Res. Lett. 44, 665–671 (2017).

    ADS 
    Article 

    Google Scholar 

  • Brown, A. J., Viviano, C. E. & Goudge, T. A. Olivine-carbonate mineralogy of the Jezero crater area. J. Geophys. Res. Planets 125, e2019JE006011 (2020).

    ADS 
    Article 

    Google Scholar 

  • Zastrow, A. M. & Glotch, T. D. Distinct carbonate lithologies in Jezero crater, Mars. Geophys. Res. Lett. 48, GL092365 (2021).

    Article 

    Google Scholar 

  • Rampe, E. B. et al. Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: a overview after six Earth years of exploration with Curiosity. Geochemistry 80, 125605 (2020).

    Article 

    Google Scholar 

  • Grin, E. A. & Cabrol, N. A. Limnologic evaluation of Gusev crater paleolake, Mars. Icarus 130, 461–474 (1997).

    ADS 
    Article 

    Google Scholar 

  • Squyres, S. W. et al. Rocks of the Columbia Hills. J. Geophys. Res. 111, JE002562 (2006).

    Google Scholar 

  • Carter, J. & Poulet, F. Orbital identification of clays and carbonates in Gusev crater. Icarus 219, 250–253 (2012).

    ADS 
    Article 

    Google Scholar 

  • Goudge, T. A., Head, J. W., Mustard, J. F. & Fassett, C. I. An evaluation of open-basin lake deposits on Mars: proof for the character of related lacustrine deposits and post-lacustrine modification processes. Icarus 219, 211–229 (2012).

    ADS 
    Article 

    Google Scholar 

  • Milliken, R. E., Grotzinger, J. P. & Thomson, B. J. Paleoclimate of Mars as captured by the stratigraphic document in Gale crater. Geophys. Res. Lett. 37, GL041870 (2010).

    Article 

    Google Scholar 

  • Frydenvang, J. et al. The chemostratigraphy of the Murray formation and position of diagenesis at Vera Rubin ridge in Gale crater, Mars, as noticed by the ChemCam instrument. J. Geophys. Res. Planets 125, JE006320 (2020).

    Article 

    Google Scholar 

  • Vaniman, D. T. et al. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars. Science 343, 24324271 (2014).

    Article 

    Google Scholar 

  • Palucis, M. C. et al. Sequence and relative timing of huge lakes in Gale crater (Mars) after the formation of Mount Sharp. J. Geophys. Res. Planets https://doi.org/10.1002/2015JE004905 (2016).

  • Rivera-Hernández, F. et al. Grain dimension variations within the Murray formation: stratigraphic proof for altering depositional environments in Gale crater, Mars. J. Geophys. Res. Planets 125, e2019JE006230 (2020).

    ADS 
    Article 

    Google Scholar 

  • Williams, R. M. E. et al. Martian fluvial conglomerates at Gale crater. Science 340, 1068–1072 (2013).

    ADS 
    Article 

    Google Scholar 

  • Jiacheng, L., R., M. J. & Mei-Fu, Z. Intense subaerial weathering of eolian sediments in Gale crater, Mars. Sci. Adv. 7, eabh2687 (2021).

    Article 

    Google Scholar 

  • Schon, S. C., Head, J. W. & Fassett, C. I. An overfilled lacustrine system and progradational delta in Jezero crater, Mars: implications for Noachian local weather. Planet. House Sci. 67, 28–45 (2012).

    ADS 
    Article 

    Google Scholar 

  • Salvatore, M. R. et al. Bulk mineralogy of the NE Syrtis and Jezero crater areas of Mars derived by thermal infrared spectral analyses. Icarus 301, 76–96 (2018).

    ADS 
    Article 

    Google Scholar 

  • Tarnas, J. D. et al. Orbital identification of hydrated silica in Jezero crater, Mars. Geophys. Res. Lett. 46, 12771–12782 (2019).

    ADS 
    Article 

    Google Scholar 

  • Salese, F. et al. Estimated minimal life span of the Jezero fluvial delta (Mars). Astrobiology 20, 977–993 (2020).

    ADS 
    Article 

    Google Scholar 

  • Mangold, N. et al. Chemical alteration of fine-grained sedimentary rocks at Gale crater. Icarus 321, 619–631 (2019).

    ADS 
    Article 

    Google Scholar 

  • Onstott, T. C. et al. Paleo-rock-hosted life on Earth and the search on Mars: a overview and technique for exploration. Astrobiology 19, 1230–1262 (2019).

    ADS 
    Article 

    Google Scholar 

  • Irwin, R. P., Howard, A. D., Craddock, R. A. & Moore, J. M. An intense terminal epoch of widespread fluvial exercise on early Mars: 2. Elevated runoff and paleolake growth. J. Geophys. Res. 110, JE002460 (2005).

    Google Scholar 

  • Tarnas, J. D. et al. Earth-like liveable environments within the subsurface of Mars. Astrobiology 21, 741–756 (2021).

    ADS 
    Article 

    Google Scholar 

  • Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506 LP–6506511 (2018).

    Article 

    Google Scholar 

  • Canfield, D. E., Rosing, M. T. & Bjerrum, C. Early anaerobic metabolisms. Phil. Trans. R. Soc. B 361, 1819–1836 (2006).

    Article 

    Google Scholar 

  • Michalski, J. R. et al. The Martian subsurface as a possible window into the origin of life. Nat. Geosci. 11, 21–26 (2018).

    ADS 
    Article 

    Google Scholar 

  • Goldblatt, C. & Zahnle, Ok. J. Faint younger Solar paradox stays. Nature 474, E1 (2011).

    ADS 
    Article 

    Google Scholar 

  • Davies, N. S. & Gibling, M. R. Cambrian to Devonian evolution of alluvial methods: the sedimentological affect of the earliest land crops. Earth Sci. Rev. 98, 171–200 (2010).

    ADS 
    Article 

    Google Scholar 

  • Davies-Colley, R. J. & Smith, D. G. Turbidity suspended sediment, and water readability: a overview. J. Am. Water Resour. Assoc. 37, 1085–1101 (2001).

  • Crowe, S. A. et al. Deep-water anoxygenic photosythesis in a ferruginous chemocline. Geobiology 12, 322–339 (2014).

    Article 

    Google Scholar 

  • Haas, S. et al. Low-light anoxygenic photosynthesis and Fe-S-biogeochemistry in a microbial mat. Entrance. Microbiol. 9, 858 (2018).

    Article 

    Google Scholar 

  • Cuadros, J. Clay minerals interplay with microorganisms: a overview. Clay Miner. 52, 235–261 (2017).

    ADS 
    Article 

    Google Scholar 

  • Pedreira-Segade, U. et al. How do nucleotides adsorb onto clays? Life 8, 59 (2018).

    Article 

    Google Scholar 

  • Hays, L. E. et al. Biosignature preservation and detection in Mars analog environments. Astrobiology 17, 363–400 (2017).

    ADS 
    Article 

    Google Scholar 

  • Beatty, J. T. et al. An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc. Natl Acad. Sci. USA 102, 9306–9310 (2005).

    ADS 
    Article 

    Google Scholar 

  • Toner, J. D. & Catling, D. C. A carbonate-rich lake answer to the phosphate downside of the origin of life. Proc. Natl Acad. Sci. USA 117, 883–888 (2020).

    ADS 
    Article 

    Google Scholar 

  • Stern, J. C. et al. Proof for indigenous nitrogen in sedimentary and aeolian deposits from the—Curiosity—rover investigations at Gale crater, Mars. Proc. Natl Acad. Sci. USA 112, 4245–4250 (2015).

    ADS 
    Article 

    Google Scholar 

  • Laskar, J. et al. Long run evolution and chaotic diffusion of the insolation portions of Mars. Icarus 170, 343–364 (2004).

    ADS 
    Article 

    Google Scholar 

  • Flannery, D. T., Summons, R. E. & Walter, M. R. in From Habitability to Life on Mars (eds Cabrol, N. A. et al.) 127–152 (Elsevier, 2018).

  • Deamer, D. W. & Georgiou, C. D. Hydrothermal situations and the origin of mobile life. Astrobiology 15, 1091–1095 (2015).

    ADS 
    Article 

    Google Scholar 

  • Related Articles

    Leave a Reply

    Your email address will not be published.

    Back to top button