Education

UK News

Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland


  • Wright, T. J. et al. Geophysical constraints on the dynamics of spreading centres from rifting episodes on land. Nat. Geosci. 5, 242–250 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sigmundsson, F. et al. Segmented lateral dyke progress in a rifting occasion at Bárðarbunga volcanic system, Iceland. Nature 517, 191–195 (2014).

  • Halldórsson, S. A. et al. Petrology and geochemistry of the 2014–2015 Holuhraun eruption, central Iceland: compositional and mineralogical traits, temporal variability and magma storage. Contributions Mineral. Petrol. 173, 1–25 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Sigurdsson, H. & Sparks, S. R. J. Lateral magma movement inside rifted Icelandic crust. Nature 274, 126–130 (1978).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sigmundsson, F. New insights into magma plumbing alongside rift methods from detailed observations of eruptive habits at Axial volcano. Geophys. Res. Lett. 43, 12,423–12,427 (2016).

    Article 

    Google Scholar 

  • Cashman, Ok. V., Sparks, R. S. J. & Blundy, J. D. Vertically in depth and unstable magmatic methods: a unified view of igneous processes. Science 355, eaag3055 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Maclennan, J. Mafic tiers and transient mushes: proof from Iceland. Philos. Trans. R. Soc. A 377, 20180021 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Rubin, Ok. H., Sinton, J. M., MacLennan, J. & Hellebrand, E. Magmatic filtering of mantle compositions at mid-ocean-ridge volcanoes. Nat. Geosci. 2, 321–328 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Herzberg, C. Partial crystallization of mid-ocean ridge basalts within the crust and mantle. J. Petrol. 45, 2389–2405 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Perfit, M. R. et al. Current volcanism within the Siqueiros rework fault: picritic basalts and implications for MORB magma genesis. Earth Planet. Sci. Lett. 141, 91–108 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gregg, P. M., Behn, M. D., Lin, J. & Grove, T. L. Soften era, crystallization, and extraction beneath segmented oceanic rework faults. J. Geophys. Res.: Strong Earth 114, 1–16 (2009).

    Google Scholar 

  • Sæmundsson, Ok., Sigurgeirsson, M. & Friðleifsson, G. Ó. Geology and construction of the Reykjanes volcanic system, Iceland. J. Volcanol. Geotherm. Res. 391, 106501 (2020).

    Article 
    CAS 

    Google Scholar 

  • Sæmundsson, Ok. et al. Geological Map of Southwest Iceland, 1:100000 (Iceland GeoSurvey, 2016).

  • Peate, D. W. et al. Historic magmatism on the Reykjanes Peninsula, Iceland: a snap-shot of soften era at a ridge phase. Contributions Mineral. Petrol. 157, 359–382 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Flóvenz, Ó. G. et al. Cyclical geothermal unrest as a precursor to Iceland’s 2021 Fagradalsfjall eruption. Nat. Geosci. 15, 397–404 (2022).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Pedersen, G. B. M. et al. Quantity, effusion fee, and lava transport throughout the 2021 Fagradalsfjall eruption: outcomes from close to real-time photogrammetric monitoring. Geophys. Res. Lett. 1–20 https://doi.org/10.1029/2021GL097125 (2022).

  • Sinton, J. M., Grönvold, Ok. & Sæmundsson, Ok. Postglacial eruptive historical past of the Western Volcanic Zone, Iceland. Geochem. Geophys. Geosyst. 6, Q12009 (2005).

  • Koornneef, J. M. et al. Melting of a two-component supply beneath Iceland. J. Petrol. 53, 127–157 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Maclennan, J., McKenzie, D., Hilton, F., Grönvold, Ok. & Shimizu, N. Geochemical variability in a single movement from northern Iceland. J. Geophys. Res.: Strong Earth 108, ECV 4-1–ECV 4-21 (2003).

    Article 
    CAS 

    Google Scholar 

  • Hartley, M. E., Bali, E., Maclennan, J., Neave, D. A. & Halldórsson, S. A. Soften inclusion constraints on petrogenesis of the 2014–2015 Holuhraun eruption, Iceland. Contributions Mineral. Petrol. 173, 1–23 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Shorttle, O. & Maclennan, J. Compositional tendencies of Icelandic basalts: implications for short-length scale lithological heterogeneity in mantle plumes. Geochem. Geophys. Geosyst. 12, Q11008 (2011).

  • Weir, N. R. W. et al. Crustal construction of the northern Reykjanes Ridge and Reykjanes Peninsula, southwest Iceland. J. Geophys. Res.: Strong Earth 106, 6347–6368 (2001).

    Article 

    Google Scholar 

  • Spiegelman, M. & Kelemen, P. B. Excessive chemical variability as a consequence of channelized soften transport. Geochem. Geophys. Geosyst. 4, 1055 (2003).

  • Jackson, M. G. & Dasgupta, R. Compositions of HIMU, EM1, and EM2 from world tendencies between radiogenic isotopes and main parts in ocean island basalts. Earth Planet. Sci. Lett. 276, 175–186 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Colman, A., Sinton, J. M. & Rubin, Ok. H. Magmatic processes at variable magma provide alongside the Galápagos Spreading Middle: Constraints from single eruptive items. J. Petrol. 57, 981–1018 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bergmanis, E. C., Sinton, J. & Rubin, Ok. H. Current eruptive historical past and magma reservoir dynamics on the southern East Pacific Rise at 17°30′′S. Geochem. Geophys. Geosyst. 8, Q12O06 (2007).

  • Goss, A. R. et al. Geochemistry of lavas from the 2005-2006 eruption on the East Pacific Rise, 9°46’N-9°56N: implications for ridge crest plumbing and decadal modifications in magma chamber compositions. Geochem. Geophys. Geosyst. 11, 1–35 (2010).

    Article 
    CAS 

    Google Scholar 

  • Clague, D. A. et al. Chemical variations within the 1998, 2011, and 2015 lava flows from axial seamount, Juan de Fuca Ridge: cooling throughout ascent, lateral transport, and movement. Geochem. Geophys. Geosyst. 19, 2915–2933 (2018).

    CAS 
    Article 

    Google Scholar 

  • Greene, A. R. et al. Temporal geochemical variations in lavas from Kilauea’s Pu’u ’O’o eruption (1983-2010): cyclic variations from melting of supply heterogeneities. Geochem. Geophys. Geosyst. 14, 4849–4873 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Vlastélic, I. & Pietruszka, A. J. in Energetic Volcanoes of the Southwest Indian Ocean: Piton de la Fournaise and Karthala (eds Bachelery, P. et al.) 185–201 https://doi.org/10.1007/978-3-642-31395-0_11 (Springer, 2016).

  • Gansecki, C. et al. The tangled story of Kīlauea’s 2018 eruption as advised by geochemical monitoring. Science 366, eaaz0147 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mutch, E. J. F., Maclennan, J., Shorttle, O., Edmonds, M. & Rudge, J. F. Speedy transcrustal magma motion below Iceland. Nat. Geosci. 12, 569–574 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jackson, M. D., Blundy, J. & Sparks, R. S. J. Chemical differentiation, chilly storage and remobilization of magma within the Earth’s crust. Nature 564, 405–409 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kamber, B. S. & Gladu, A. H. Comparability of Pb purification by anion-exchange resin strategies and evaluation of long-term reproducibility of Th/U/Pb ratio measurements by quadrupole ICP-MS. Geostand. Geoanalytical Res. 33, 169–181 (2009).

    CAS 
    Article 

    Google Scholar 

  • Baker, J., Peate, D., Waight, T. & Meyzen, C. Pb isotopic evaluation of requirements and samples utilizing a 207Pb-204Pb double spike and thallium to appropriate for mass bias with a double-focusing MC-ICP-MS. Chem. Geol. 211, 275–303 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Pin, C., Gannoun, A. & Dupont, A. Speedy, simultaneous separation of Sr, Pb, and Nd by extraction chromatography previous to isotope ratios dedication by TIMS and MC-ICP-MS. J. Anal. At. Spectrom. 29, 1858–1870 (2014).

    CAS 
    Article 

    Google Scholar 

  • Weis, D. et al. Excessive-precision isotopic characterization of USGS reference supplies by TIMS and MC-ICP-MS. Geochem. Geophys. Geosyst. 7, 1–30 https://doi.org/10.1029/2006GC001283 (2006).

  • Caracciolo, A. et al. Oxygen isotope proof for progressively assimilating trans-crustal magma plumbing methods in Iceland. Geology 50, 796–800 (2022).

  • Shishkina, T. A., Botcharnikov, R. E., Holtz, F., Almeev, R. R. & Portnyagin, M. V. Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures as much as 500MPa. Chem. Geol. 277, 115–125 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Oppenheimer, C. & Kyle, P. R. Probing the magma plumbing of Erebus volcano, Antarctica, by open-path FTIR spectroscopy of gasoline emissions. J. Volcanol. Geotherm. Res. 177, 743–754 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Burton, M., Allard, P., Mure, F. & la Spina, A. Magmatic gasoline composition reveals the supply depth of slug-driven strombolian explosive exercise. Science 317, 227–230 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Aiuppa, A. et al. The 2007 eruption of Stromboli volcano: insights from real-time measurement of the volcanic gasoline plume CO2/SO2 ratio. J. Volcanol. Geotherm. Res. 182, 221–230 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ilyinskaya, E. et al. Degassing regime of Hekla volcano 2012-2013. Geochim. Cosmochim. Acta 159, 80–99 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Liu, E. J. et al. Aerial methods advance volcanic gasoline measurements at inaccessible, strongly degassing volcanoes. Sci. Adv. 6, eabb9103 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Caracciolo, A. et al. Temporal evolution of magma and crystal mush storage circumstances within the Bárðarbunga-Veiðivötn volcanic system, Iceland. Lithos 352–353, 105234 (2020).

  • Neave, D. A., Namur, O., Shorttle, O. & Holtz, F. Magmatic evolution biases basaltic information of mantle chemistry in direction of melts from recycled sources. Earth Planet. Sci. Lett. 520, 199–211 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Putirka, Ok. D., Mikaelian, H., Ryerson, F. & Shaw, H. New clinopyroxene-liquid thermobarometers for mafic, advanced, and volatile-bearing lava compositions, with purposes to lavas from Tibet and the Snake River Plain, Idaho. Am. Mineralogist 88, 1542–1554 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • van der Meer, Q. H. A., Bali, E., Guðfinnsson, G. H., Kahl, M. & Rasmussen, M. B. Heat and barely diminished mantle below the off-rift Snæfellsnes Volcanic Zone, Iceland. J. Petrol. https://doi.org/10.1093/petrology/egab057 (2021).

  • Nikolaev, G. S., Ariskin, A. A., Barmina, G. S., Nazarov, M. A. & Almeev, R. R. Check of the Ballhaus–Berry–Inexperienced Ol–Opx–Sp oxybarometer and calibration of a brand new equation for estimating the redox state of melts saturated with olivine and spinel. Geochem. Int. 54, 301–320 (2016).

    CAS 
    Article 

    Google Scholar 

  • Putirka, Ok. D. Thermometers and barometers for volcanic methods. Rev. Mineral. Geochem. 69, 61–120 (2008).

    CAS 
    Article 

    Google Scholar 

  • Neave, D. A. & Putirka, Ok. D. A brand new clinopyroxene-liquid barometer, and implications for magma storage pressures below Icelandic rift zones. Am. Mineralogist 102, 777–794 (2017).

    ADS 
    Article 

    Google Scholar 

  • Hill, E., Blundy, J. D. & Wooden, B. J. Clinopyroxene-melt hint aspect partitioning and the event of a predictive mannequin for HFSE and Sc. Contributions Mineral. Petrol. 161, 423–438 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Putirka, Ok. Clinopyroxene + liquid equilibria to 100 kbar and 2450 Ok. Contributions Mineral. Petrol. 135, 151–163 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Neave, D. A. et al. Clinopyroxene-liquid equilibria and geothermobarometry in pure and experimental tholeiites: the 2014-2015 Holuhraun Eruption, Iceland. J. Petrol. 60, 1653–1680 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ghiorso, M. S. & Gualda, G. A. R. An H2O–CO2 combined fluid saturation mannequin suitable with rhyolite-MELTS. Contributions Mineral. Petrol. 169, 1–30 (2015).

    CAS 
    Article 

    Google Scholar 

  • Iacono-Marziano, G., Morizet, Y., le Trong, E. & Gaillard, F. New experimental knowledge and semi-empirical parameterization of H2O-CO2 solubility in mafic melts. Geochim. Cosmochim. Acta 97, 1–23 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Shishkina, T. A. et al. Compositional and strain results on the solubility of H2O and CO2 in mafic melts. Chem. Geol. 388, 112–129 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Maclennan, J. Bubble formation and decrepitation management the CO2 content material of olivine‐hosted soften inclusions. Geochem. Geophys. Geosyst. 18, 597–616 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Matthews, S., Shorttle, O., Maclennan, J. & Rudge, J. F. The worldwide soften inclusion C/Ba array: mantle variability, melting course of, or degassing? Geochim. Cosmochim. Acta 293, 525–543 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wieser, P. E., Iacovino, Ok., Matthews, S., Moore, G. & Allison, C. M. VESIcal Half II: a vital strategy to risky solubility modelling utilizing an open-source Python3 engine. Earth Area Sci. e2021EA001932 (2021).

  • Aiuppa, A., Casetta, F., Coltorti, M., Stagno, V. & Tamburello, G. Carbon focus will increase with depth of melting in Earth’s higher mantle. Nat. Geosci. 14, 697–703 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Edmonds, M. New geochemical insights into volcanic degassing. Philos. Trans. R. Soc. A 366, 4559–4579 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Iacovino, Ok., Matthews, S., Wieser, P. E., Moore, G. M. & Begue, F. VESIcal Half I: an open-source thermodynamic mannequin engine for combined risky (H2O-CO2) solubility in silicate melts. Earth Area Sci. https://doi.org/10.1029/2020EA001584 (2021).

  • Presnall, J. et al. Era of mid-ocean ridge basalts at pressures from 1 to 7 GPa. Geochim. Cosmochim. Acta 66, 2073–2090 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Workman, R. Ok. & Hart, S. R. Main and hint aspect composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Smith, P. M. & Asimow, P. D. Adiabat_1ph: a brand new public front-end to the MELTS, pMELTS, and pHMELTS fashions. Geochem. Geophys. Geosyst. 6, https://doi.org/10.1029/2004GC000816 (2005).

  • Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W. & Kress, V. C. The pMELTS: a revision of MELTS for improved calculation of section relations and main aspect partitioning associated to partial melting of the mantle to three GPa. Geochem. Geophys. Geosyst. 3, 1–35 (2002).

    Article 

    Google Scholar 

  • McKenzie, D. & O’Nions, R. Ok. Partial soften distributions from inversion of uncommon earth aspect concentrations. J. Petrol. 32, 1021–1091 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • McKenzie, D. & O’Nions, R. Ok. The supply areas of ocean island basalts. J. Petrol. 36, 133–159 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Related Articles

    Leave a Reply

    Your email address will not be published.

    Back to top button